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a b s t r a c t

The stability in the first approximation of the rotation of a satellite about a centre of mass is investigated.
In the unperturbed motion the satellite performs, in absolute space, three rotations around the normal
to the orbital plane in a time equal to two periods of rotation of its centre of mass in the orbit (Mercury-
type rotation). Three cases of such rotations are considered: the rotations of a dynamically symmetrical
satellite and a satellite, the central ellipsoid of inertia of which is close to a sphere, in an elliptic orbit
of arbitrary eccentricity, and the rotation of a satellite with three different principal central moments of
inertia in a circular orbit.

© 2008 Elsevier Ltd. All rights reserved.

1. The Hamiltonian function

Consider the motion of a satellite–rigid body about a centre of mass under the action of the gravitational moments of a central Newtonian
force field. The linear dimensions of the satellite are assumed to be small compared with the characteristic size of the orbit, which enables
us to assume,1 that its motion about the centre of mass has no effect on the motion of the centre of mass itself. It is assumed that the centre
of mass of the satellite moves in an elliptical orbit with eccentricity e(0 ≤ e < 1).

Suppose OXYZ is an orbital system of coordinates with origin at the centre of mass O of the satellite. Its OZ axis is directed along the
radius vector of the centre of mass relative to an attracting centre, while the OX and OY axes are parallel to the transversal and normal to
the plane of the orbit respectively. In absolute space, the trihedron OXYZ rotates around the OY axis with angular velocity

(1.1)

where � is the true anomaly and � is the period of rotation of the centre of mass in the orbit.
The system of coordinates Oxyz is rigidly connected to the satellite and its axes are directed along the principal central axes of inertia

of the satellite. We will denote the moments of inertia corresponding to these axes by A, B and C. The mutual orientation of the trihedrons
Oxyz and OXYZ will be specified using the Euler angles �, �, �.

The kinetic energy of the satellite in its motion about the centre of mass is calculated from the formula

(1.2)

where p, q and r are the projections of the absolute angular velocity of the satellite onto the Ox, Oy and Oz axes:

(1.3)
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The potential energy of the satellite in the problem of its motion about the centre of mass has the form1

(1.4)

Using the Lagrange function L = T − � we introduce the generalized momenta

(1.5)

If T2 is the part of the kinetic energy which is a quadratic form with respect to �̇, �̇, �̇ while T0 is the part which is independent of
�̇, �̇, �̇, the Hamiltonian function can be calculated from the formula2

(1.6)

on the right-hand side of which the quantities �̇, �̇, �̇ are replaced by their expressions in terms of �, �, �, P�, P�, P� obtained from relations
(1.5).

If, using the equalities

(1.7)

we introduce the dimensionless momenta p�, p�, p� and, using Eq. (1.1), we change to a new independent variable, namely, the true
anomaly, then the expression for the Hamiltonian function (1.6) can be written in the form

(1.8)

2. The stability of the rotation of a dynamically symmetrical satellite in an elliptic orbit

If the satellite is dynamically symmetrical (A = B), then � is a cyclic coordinate and

(2.1)

(2.2)

Here r0 is the projection of the absolute angular velocity of the satellite onto its axis of symmetry Oz, which, when A = B, is constant.
Substituting the expression for p�, obtained from (2.1), into the function (1.8) and putting A = B in it, we arrive3 at a reduced system

with two degrees of freedom with Hamiltonian function H = H(�, �, p�, p�, �; e, �, �). The reduced system describes the motion of the axis
of symmetry of the satellite in an orbital system of coordinates. If this motion is obtained, the rotation of the satellite around the axis of
symmetry (i.e. the relation � = �(�)) is found from integral (2.2) using a quadrature. The Hamiltonian function of the reduced system, in
addition to the eccentricity of the orbit e, depends on two more dimensionless parameters

Steady rotation and the Hamiltonian function of perturbed motion. The reduced system, for any physically allowable values of the
parameters �, � and e, allows of the particular solution4

(2.3)

in which the axis of symmetry of the satellite Oz is perpendicular to the orbital plane, while the satellite itself rotates around this axis with
constant angular velocity r0.

In the Hamiltonian function H = H(�, �, p�, p�, �; e, �, �) of the reduced system we put
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and expand it in series in powers of qi, pi (i = 1,2). The corresponding quadratic part of the Hamiltonian function of the perturbed motion
of the linear problem of the stability of steady rotation (2.3) has the form

(2.4)

For Mercury-type steady rotation, the value of r0 is equal to 3	0/2 (i.e. � = 3/2).
Regions of stability and instability when � = 3/2. Suppose we put � = 3/2 in the Hamiltonian function (2.4). Again putting e = 0, we

obtain the Hamiltonian function corresponding to the linearized equations of perturbed motion of the satellite in the neighbourhood of its
Mercury-type rotation in a circular orbit. When 0 < � < 8/9, � /= 2/3 the rotation considered is unstable in a circular orbit, since there is a
root with a positive real part in the characteristic equation.1,5 When � = �0 = 2/3 and � = �* = 8/9 there are no roots with positive real part
in the characteristic equation, but there are multiple zero roots; in these two cases there is also instability in the first approximation.6 For
the remaining physically allowed values of the parameter �,

(2.5)

the rotation of the satellite is stable.7 For values of � from the range (2.5) the Hamiltonian function (2.4) (when � = 3/2 and e = 0) is
positive definite, while the roots of the characteristic equation ±i	1, ±i	2 are pure imaginary and different, where the frequencies 	1 and
	2(	1 > 	2 > 0) of small oscillations of the axis of symmetry of the satellite in the neighbourhood of the normal to the orbital plane are the
roots of the equation

(2.6)

For small but non-zero values of the eccentricity e, the regions of stability and instability can be obtained, for example, using the
Deprit–Hori method of canonical replacements of variables.8,9 Bearing in mind the sign-definiteness of the function (2.4) when e = 0, using
the Krein–Gel’fand–Lidskii theorem,10 we obtain that, in the range (2.5), the following seven points are generating points for regions of
parametric resonance (the corresponding resonance relations for the frequencies 	1 and 	2 are given in brackets):

(2.7)

The boundaries of the regions of instability, emerging from these points when e = 0, for small e are given by the equations

The boundary of the region of instability, issuing from the point �* = 8/9 for small e, is described by the equation

The regions of stability and instability in the neighbourhood of the point � = �0 = 2/3 were obtained previously in Ref. 9. In the case
considered here, � = 3/2 and, for small e, the boundaries of the region of stability are given by the equations
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Fig. 1.

Fig. 2.

For values of e that are not small, the stability was investigated using well-known algorithms8 by a numerical analysis of the characteristic
equation of a linear system, 2
-periodic in � with Hamiltonian function (2.4) (for � = 3/2). The calculations were carried out for values of
e < 4.96.

The results of numerical and analytical investigations of the stability of the steady rotation of a satellite for � = 3/2 are shown in
Figs. 1 and 2 in the plane of the parameters e, �. The regions of instability are shown hatched.

Below the point (0.8200, 0.7988), at which the boundary curve �−
1 and �*(e) intersect (see Fig. 1), the steady rotation of the satellite

is unstable for all e and �, apart from their values in a very narrow region of stability, emerging from the point (0, 2/3). This region is a
curvilinear triangle with vertices Q(0, 2/3), R(0.106, 0.667), S(0.125, 0.662) and is shown in Fig. 2.

When e = 0.2056 (the eccentricity of the Mercury orbit) there are eight intervals of stability:

(2.8)

If the value of � does not lie in the intervals (2.8) or on their boundaries, then when e = 0.2056, steady rotation of a Mercury-type satellite
is unstable.

3. The rotation stability of a satellite when the value of � is close to 3/2

Suppose, as before, that the satellite is dynamically symmetrical and its centre of mass moves in an elliptic orbit. The problem of the
stability of steady rotation when it is not Mercury-type rotation but close to it (0 < |� − 3/2| � 1) is of interest. We will consider this problem
for a satellite, the central ellipsoid of inertia of which differs only slightly from a sphere (0 < |� − 1| � 1).
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The limiting case � = 1, � = 3/2. We will denote the Hamiltonian function (2.4), calculated for � = 1 and � = 3/2, by H(0)
2 . Suppose X(�) is

the fundamental matrix of the solutions of the linear system of differential equations with Hamiltonian function H(0)
2 , which satisfies the

condition X(0) = E, where E is the fourth-order unit matrix. We can obtain the following explicit expression for this

(3.1)

(M = M(�) is the mean anomaly).
The characteristic equation of the matrix X(2
) is independent of the eccentricity and can be written in the form (�2 − 1)2 = 0, where

two linearly independent eigenvectors of the matrix X(2
) correspond to each double root of this equation. Hence11 when � = 1 and � = 3/2
the steady rotation of the satellite (2.3) is stable. This conclusion agrees with the results of numerical calculations (Fig. 1).

Using the canonical univalent replacement of variables, 2
-periodic in �,

(3.2)

the “unperturbed” Hamiltonian function H(0)
2 can be reduced to its normal form. According to a well-known algorithm (Ref. 8), the matrix

N can be obtained in the form of a product of three matrices

(3.3)

where

(3.4)

while the normal form has the form

(3.5)

Regions of stability and instability when � ≈ 1 and � ≈ 3/2. To investigate the stability for small values of the quantities |� − 1| and
|� − 3/2| we put

(3.6)

We substitute expressions (3.6) into function (2.4), expand it in series in powers of � and then make the replacement of variables using
formulae (3.2)–(3.4). As a result we obtain the Hamiltonian function of the perturbed motion in the form of the following series

(3.7)

The function � (0)
2 is defined by (3.5), but the functions � (i)

2 (i ≥ 1) are not written explicitly because of their length. There are quadratic
forms in 1, 2, �1, �2 with coefficients that are 2
-periodic in � which depend on the excentricity e and the quantities �(1), �(2), . . ., �(i)

from representation (3.6) of the parameter � in the form of a series. On the boundaries of the regions of stability and instability these
quantities are functions of e.

The problem in question contains a multiple (double) parametric resonance, since the frequencies 	1 and 	2 of small oscillations of the
limit system (when � = 0) with Hamiltonian function � (0)

2 at once satisfy two resonance relations: 	1 = 1 and 2	2 = 1.
Using the algorithm proposed earlier in Ref. 9, we obtain that, in the first approximation in �, the region of instability is given by the

inequality

(3.8)
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Fig. 3.

where �(1)
j (j = 1, 2) are functions of e. In particular, when e = 0.2056 we have

For small e the functions �(1)
j are represented by series of the form

In Fig. 3 we show regions of stability and instability in the neighbourhood of the point � = 1, � = 3/2 for e = 0.2056 (the regions of instability
are shown hatched). These regions are obtained by analysing the characteristic equation with Hamiltonian function (2.4), obtained by
numerical integration. In the range of variation of the parameters � and �, shown in Fig. 3, the boundaries of the regions of stability and
instability, obtained by numerical integration, are practically indistinguishable from the approximate boundaries defined by relations (3.8).

If the satellite is dynamically oblate (� > 0), then, in the region of instability, the value of � should be less than its value corresponding
to Mercury-type rotation (when � = 3/2). For a dynamically prolate satellite (� < 0), conversely, in the region of instability � > 3/2.

4. The stability of the rotation of an asymmetrical satellite in a circular orbit

Suppose the satellite is not dynamically symmetrical, while the orbit of its centre of mass is circular (e = 0). We will specify the geometry
of the mass of the satellite using the following two dimensionless inertial parameters

We will make the canonical (with valence 4/�) replacement of variables

(4.1)

From expression (1.8) and replacements (4.1) we obtain that the Hamiltonian function F, represented in the form of the following series

(4.2)

where

(4.3)

(4.4)

corresponds to the motions of a satellite, close to its plane motions about the centre of mass in a circular orbit.
The dots in expansion (4.2) denote the set of forms Fm (m ≥ 4) of even powers in qi and pi (i = 1,2). The mean anomaly M is the independent

variable.
The unperturbed Mercury-type plane rotation is given by the equalities q1 = q2 = p1 = p2 = 0 and

(4.5)
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Fig. 4.

Here we have used the generally accepted notation from the theory of elliptic functions and integrals,12 where the modulus k of the elliptic
functions and the parameter � are connected by the relation

(4.6)

Since 0 < |�| ≤ 3, we have 0 < k ≤ k* = 0.99985.
To solve (4.5) and (4.6) irrespective of the sign of � at the instant when M = 0 and at instants when the mean anomaly M is a multiple

of 2
, the axis of the last of the moments of inertia (A or B) is directed along the radius vector of the centre of mass of the satellite.
The function (4.4), in which the quantities q and p are calculated from formulae (4.5) and (4.6), describes the linear problem of the

stability of the plane motion considered with respect to spatial perturbations. This function is 2
-periodic in the independent variable M.
Note the following symmetry property of the Hamiltonian function of the perturbed motion. The function (4.4), calculated (taking

formulae (4.5) into account) for � > 0, by making the replacements

converts into the same function (4.4), but calculated for � < 0. Hence, when constructing the regions of stability and instability we can
confine ourselves solely to the case when � > 0. The corresponding regions for � < 0 are then simply obtained on the basis of this symmetry
property.

The range of values of the parameters � and � considered further is a trapezium-shaped tetragon with vertices (0, 0) (0, 3), (1, 3) and (2,
0), shown in Fig. 4. The side of the tetragon, connecting the vertices (1.3) and (2.0) is part of the hyperbola � = −3 + 6/� (C = A + B), while the
remaining sides are sections of straight lines. The tetragon is split by the vertical straight line � = 1 (C = A) and the hyperbola � = −3 + 3/�
(C = B) into three regions g1, g2 and g3, for which the Oz axis (perpendicular to the orbital plane in unperturbed motion), is the axis of the
least, mean and greatest value of the moments of inertia A, B and C respectively.

For � = 0 (the satellite is dynamically symmetrical, A = B), rotation (4.5), (4.6) changes into the steady rotation of the satellite considered
in Section 2 (for e = 0). Hence, the conclusions regarding the stability of the rotation (4.5), (4.6) for � = 0 are identical with the conclusions
in Section 2 regarding the stability of Mercury-type rotation in a circular orbit. The points of the axis �, from which the region of instability
originates (i.e. the points �0 = 2/3, �* = 8/9 and the points �1, �2, . . ., �7, given by Eq. (2.7)) will be the same as in Section 2.

We will briefly describe the results of analytical and numerical investigations of the stability of rotation (4.5), (4.6) when � /= 0. In the
region g1, corresponding to rotation around the axis of least moment of inertia, there are three regions of stability 1, 2 and 3 (Fig. 5). Region

Fig. 5.
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1 is enclosed between two curves, connecting the point (�0, 0) and the point P (0.598, 0.665). For small � these curves are given by the
equations

Region 2 has the � = 0 axis as its lower boundary of the section [�*, �1]. The equation of its left boundary, originating from the point (�*,
0) for small � has the form

while the right boundary, originating from the point (�0, 0), is given by the equation

The right and left boundaries, as � increases, intersect at the point S (0.632, 1.747), lying on the hyperbola � = −3 + 3/�, separating regions
g1 and g2. Region 3 has the form of a curvilinear triangle. Its base is a section of the � = 0 axis, connecting the points (�1, 0) and (1, 0). The
equation of the left side for small � has the form

while the right side is a section of the hyperbola � = −3 + 3/�. The vertex of the triangle is the point T (0.729, 1.114).
For values of the parameters � and �, lying in the region g1 outside the regions 1, 2 and 3, the rotations of the satellite are unstable.
In region g2, corresponding to rotation of the satellite around the axis of mean moment of inertia, there is one very narrow region of

stability – the interior of the triangle QRS with vertices Q (0.614, 1.884), R (0.582, 2.175) and S (0.632, 1.747) (region 4 in Fig. 5). The base QS
of the triangle is part of the hyperbola � = −3 + 3/�. Outside region 4 there is instability.

In the right upper part of Fig. 5 we show regions of stability and instability for the case of rotation around the axis of greatest moment
of inertia (the region g3 in Fig. 4). There are six regions of instability. They originate from the points (�j, 0) (j = 2, 3, . . ., 7) of the � = 0 axis
and for small � are given by the following equations

The regions of instability are very narrow, and hence the representations of the boundaries of each of them on the right of the upper part
of Fig. 5 merge. When � → 3 all the regions of instability tend asymptotically to the point (1, 3), corresponding to a satellite in the form of
a thin rod (A = C, B = 0).

For values of the parameters � and � from the region g3, which do not belong to the six regions of instability indicated or their boundaries,
the rotations of the satellite are stable.
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